
16

ISSA
PreemInent truSted GlobAl

InformAtIon SecurIty communIty

Abstract
Reverse engineering and modification of managed code
(most notably .NET and Java applications) are well-under-
stood and common practices. Legitimate scenarios include
software debugging, technical support, and developer train-
ing. However, these same practices can present material orga-
nizational risk, including intellectual property theft, opera-
tional disruption, software piracy, and data loss. This article
enumerates specific risks unique to managed code, guidance
on assessing organizational materiality of these risks, and an
inventory of broadly recognized risk-mitigation technologies
and practices.

the rise of managed code – most everyone
uses it somewhere

Managed code can be contrasted with “machine
code” (or “native code”). An application distrib-
uted as machine code is comprised of low-level

instructions that execute directly on the CPU where the ap-
plication is running. Since each CPU type has its own in-
struction set, a developer must build a distinct executable for
every type of CPU that he wants to support.

Conversely, an application distributed as managed code runs
on a “virtual machine” rather than directly on the native
CPU. This level of execution abstraction allows developers to
build one executable that will run everywhere versus the la-
bor-intensive alternative of building CPU-specific machine-
code binaries. In order to make this approach efficient, a “just
in time” compiler or JIT sits inside each virtual machine and
generates the site-specific machine code as the application is
being run.

One consequence of this approach is that managed code must
include additional information for the JIT to do its job as
compared to the machine code alternative. This additional
information is also what makes managed code materially
easier to understand, reverse engineer, and to modify. It is
the just-in-time compilation that delivers all of the benefits of
managed code, and it is why managed code presents unique
risks.

The Java platform and the .NET framework are the two most
widely adopted examples of managed code systems. Today,
virtually every organization and individual relies on Java and
.NET software in some fashion, either at the place of work,
navigating the Internet, or using mobile phones.

reverse engineering managed code – everyone
does it
Today, there are literally dozens of freely available decompil-
ers, and reverse engineering is a standard and common prac-
tice among developers. The reverse engineering of an applica-
tion that might have taken weeks with native code can now
be accomplished in seconds. Not only is reverse engineering
easy, it is also an effective technique for a variety of legitimate
development activities including:

•	 Debugging

•	 Developer training

•	 Ensuring interoperability

•	 Replacing lost source code

•	 Technical support

this article enumerates specific risks unique to managed code, guidance on assessing

organizational materiality of these risks, and an inventory of broadly recognized risk-

mitigation technologies and practices.

By Sebastian Holst

Assessing and managing Security
risks unique to Java and .net

connect

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

17

Assessing and managing Security risks unique to Java and .net | Sebastian Holst

compiled “just in time,” the emergence of a wide array of le-
gitimate use cases, and free developer tools have simplified
reverse engineering and code injection to such an extent that
a developer’s idle curiosity may be the only motivation re-
quired to start playing with your managed code.

risks stemming from reverse engineering and code
injection
With easy access to reverse engineering tools and code in-
jection technology, unauthorized access and modification of
managed code can pose a broad spectrum of risks (Figure 2).

figure 2: risks stemming from unauthorized access to source code via
reverse engineering and post-compile code injection.

Unauthorized access to source code through reverse engi-
neering can lead to:

•	 Intellectual property theft: This is probably the most
widely recognized risk that stems directly from unau-
thorized access to source code. Possession of functioning
source code provides transparent access to any IP that may
be encoded therein.

•	 Vulnerability probe: Classic application vulnerabilities
such as SQL injection or cross-site scripting do not require
access to source code to detect. However, source code
analysis can reveal the presence of hardcoded credentials,
data encryption conventions (or lack thereof) as well as a
other operational vulnerabilities.

•	 Social engineering: Auditors have flagged managed code
plug-ins inside online banking applications as revealing
information that identity thieves could re-use as they pose
as bank employees surveying customer experience. After
convincing a bank’s customers that they are with the bank
and earning their trust, collecting personal information
becomes a straightforward exercise.

Modification of applications after compilation can lead to:

•	 Piracy: This is probably the most widely recognized risk
from direct manipulation of a commercial application. A
common “cracking” strategy is to “stub out” license veri-
fication method calls or overwrite the verification result
leading to unauthorized access to the application and/or
other assets it may govern. NOTE: Piracy is not limited to
application piracy. Software is often a “gateway” to access

modifying managed executables – it’s a common
practice
The modification of managed code is only modestly more
complex that reverse engineering. In fact, the relative ease
of managed code modification has made practical aspect-
oriented programming, an entirely new programming ap-
proach that uses this ability as one of its core technologies.
As was the case with reverse engineering, there are legitimate
scenarios where the post-compile modification of managed
code is both a common and a widely accepted practice. These
include:

•	 Application hardening against vulnerabil-
ity exploitation

•	 Auditing and logging

•	 Debugging

•	 Performance profiling

•	 Testing

the unique risk profile of managed
code – it’s well understood
Unauthorized reverse engineering of software is not
new, but the risk profile for managed code is quite dis-
tinct and merits closer study. Reverse engineering has histor-
ically been a difficult and time-consuming undertaking. As
such, it was a relatively uncommon occurrence, undertaken
predominantly by organizations with a strong commercial
or military incentive; legal remedies1 could be relied upon to
serve as a control, a disincentive, and a reasonable incident
response mechanism. Clearly, managed code has turned this
worldview upside down.

figure 1: changing risk profile as applications migrate from machine code to
managed code

These capabilities are no longer restricted to the most skilled
and determined (Figure 1). Today, virtually every developer,
regardless of skill or motivation, can readily view and modify
managed code. The use of intermediate languages that are

1 Reverse engineering and application tampering is not inherently illegal. However,
while laws vary, usually the circumvention of “copyright protection systems” is
widely prohibited by law. Even here, exceptions are often made for interoperability,
security, and privacy considerations. Further, many jurisdictions explicitly permit
reverse engineering of lawfully acquired products as a legitimate means to extract
trade secrets not otherwise protected by copyright or patents.

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

18

Assessing and managing Security risks unique to Java and .net | Sebastian Holst

equipment and content. Telecommunications, medical,
and automotive devices are all commonly managed and
configured by software. Premium content is also com-
monly managed by software. Breaking software controls
can lead to pirated equipment and content.

•	 Service level breach: This is a particular issue for organi-
zations that monetize support for specific configurations
of open source applications. Individuals within end-user
organizations may attempt to fix or extend a supported
configuration.

•	 Malware: Classic malware attacks rarely target managed
applications. This likely explanation for this is simply that
using Internet applications to introduce malware is far
more efficient. However, this tactic may prove effective as
a strategy to gain access to specific information or to de-
stabilize an organization’s operations.

•	 Data loss and privacy violation: Depending on the con-
text, this may be the most serious risk. PCI, HIPPA, FIS-
MA, and other regulations recognize that data cannot be
effectively managed without control over the systems that
create, manage, and distribute that data. Insight into the
internal workings of an application as well as the ability to
alter an application’s behavior can be used to access, alter,
and distribute private data.

materiality – so what?
Given the awareness and ease of reverse engineering and code
injection capabilities with managed code, one must assume
that if an individual has access to a managed executable, he
also has access to the source code and the ability to modify its
behavior. Of course, this begs the question, so what? If your
applications are open source, why should you care if your ap-
plications are reverse engineered? If the only users of your
application are privileged to such an extent that if they are
malicious, they will have the ability to do far more damage in
other ways, then code injection is the least of your worries. As
with all potential risks, assessing the likelihood of an event in
combination with the materiality (degree of risk) should the
event occur must be measured against your organization’s
tolerance (or appetite) for risk. Without this perspective,
there is no reliable means to evaluate and prioritize controls
and risk mitigation options (that come with their own costs
and risks).

Reverse engineering and code injection may or may not pose
a material risk to your organization. A full treatment of rel-
evant risk factors and how to measure them is beyond the
scope of this article. However, the following provides a broad
overview of potentially relevant considerations:

Application considerations
•	 Role or use of applications within critical business func-

tions: The extent to which managed applications play a
critical role in material operations or offer competitive ad-
vantage will increase the materiality risk.

•	 Application access to sensitive information: The mate-
riality of risk increases proportionately with the potential
that a compromised managed application might lead to
information loss or privacy violations.

•	 Application architecture: Applications that rely upon
distributed components and services offer additional op-
portunities to compromise an application’s integrity. This
includes distributed computing models such as SOA, rich
Internet application technologies such as Silverlight, and
those designed to run on mobile devices such as J2ME.

•	 IT infrastructure: Applications that are run inside a sin-
gle secure environment (inside an enterprise or security
hosted) are more secure than those that are distributed to
partners, clients, or publicly available for use or evalua-
tion.

•	 Authorship: Applications developed by third parties pres-
ent their own risk profiles. Under certain circumstances,
enterprise consumers may want to mandate that their sup-
pliers harden their commercial products.

organizational considerations
•	 Revenue or value associated with the applications’

source code: The materiality of risk increases when IP
theft, software piracy, or the theft of other products and
services occurs.

•	 Size, complexity, and distribution of application devel-
opment: The likelihood that a malicious party will have
access to your compiled application, that vulnerabilities
may be introduced, and/or that artifacts within applica-
tions may hold unrecognized potential for vulnerability
exploitation is increased in proportion to the complexity,
scale, and distribution of your (or your suppliers’) devel-
opment activities.

•	 Degree of regulatory obligations and oversight: The ma-
teriality of risk increases proportionately with the likeli-
hood that a compromised managed application might
lead to regulatory violations or material incidents due to
operational disruption, information loss or privacy viola-
tions. Regulatory violations amplify risk as they add fines,
damage to reputation, etc.

user considerations
•	 Inside or outside: Users that are well-known and account-

able reduce risk.

Applications that rely upon distributed
components and services offer

additional opportunities to compromise
an application’s integrity.

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

19

Assessing and managing Security risks unique to Java and .net | Sebastian Holst

•	 Technical skill: Some small degree of technical training
is required.2

managing risk: technology is required but
not sufficient
Obfuscation, the first technology designed specifically to pre-
vent reverse engineering of managed code, emerged almost as
soon as the Java platform was released in 1996. However, in
recent years, there have been many advances in obfuscation
as well as the emergence of a variety of other techniques that,
with obfuscation, fall under the umbrella term “Application
Hardening and Shielding,” defined as “ a set of technologies
used to add or inject security functionality within applica-
tions specifically for the detection and prevention of applica-
tion-level intrusions.”3

technology: application hardening and shielding
The following technologies can be applied in various com-
binations to mitigate some or all of the risks that stem from
reverse engineering and code injection.

Anti-reverse engineering

•	 Obfuscation: A collection of transformations that are ap-
plied to compiled applications that make reverse engineer-

2 Neil MacDonald and Joseph Feiman, “Hype Cycle for Data and Application
Security,” Gartner, Inc., July 17, 2009.

3 Ibid.

ing materially more difficult for people and machines, but
do not alter the behavior of the obfuscated application.
The most common and effective obfuscation transforma-
tions include:

•	 Renaming: altering the names of methods, variables,
etc., to make source code more difficult to under-
stand. Strong renaming algorithms use overloading to
reuse names forcing every line to be analyzed.

•	 Control flow: logic and flow are re-expressed, pre-
venting translation back into valid C# (or any other
high level language).

•	 String encryption: strings such as login prompts, SQL
queries, etc., are encrypted, and decryption function
calls are injected into the instruction stack before the
string is needed.

•	 Ahead of time compilation: Techniques that apply the
Just-In-Time compiler before distribution to convert man-
aged code to native code have the potential to undermine
the rationale for moving to managed code in the first place.

•	 Packing: Techniques that encrypt and compress managed
code and include a native code component to “unpack”
and execute the components at runtime.

•	 Secure Virtual Machine (SVM): A virtual machine that
executes a form of encrypted intermediate language (IL).
This is different than standard encryption that requires
decryption of IL before it can be executed.

Technology Strengths Weaknesses Side-effects

Obfuscation:
Renaming

Defeats human inspection. Performance
neutral.

Decompiled source can be recompiled. Can break reflection and other indirect
method calls.

Obfuscation:
Control flow

Defeats machine translation. Method names are left intact. Can impact performance for computa-
tionally intensive code.

Obfuscation:
String encryption

Hides embedded strings such as queries
and other strings.

Weak protection. Decryption must happen
on the client; therefore, an attacker can
observe and defeat it .

Can impact performance for computa-
tionally intensive code.

Ahead of time
compilation

Easy to implement. Defeats machine
reverse engineering.

Software is no longer managed code. Loses platform independence.

Packing Easy to implement. Defeats machine
reverse engineering.

Easy to reverse in a very short amount
of time.

May not PEverify. May lose platform
independence.

Secure virtual
machine

Extremely secure. Debugging and patches cannot be sup-
ported.

Significant performance impact up to
1000X.

Code signing Extremely difficult to defeat. Assemblies can be “re-signed.” No de-
fense or notification. Always fee-based.

None.

Tamper defense
Easy to implement. Custom behavior can
be injected for real-time defense and
custom notification.

None. May moderately increase program size.

Usage monitoring
Can detect unauthorized users and
installation. Can detect suspicious usage
patterns.

Does not defend or provide real-time
response.

May moderately increase program size,
require opt-in logic to be included, and
impact application performance.

table 1 – Application hardening technology characteristics

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

20

Assessing and managing Security risks unique to Java and .net | Sebastian Holst

to ensure that the process is applied appropriately and con-
sistently (Figure 3). These considerations are particularly
important when evaluating the practicality of implementing
potential technologies and specific commercial options.

commercial evaluation criteria
Application hardening and shielding technologies are often
intrusive, are typically applied in the very last stages of the
development cycle, and have the potential to materially al-
ter the behavior of an application. Commercial-grade imple-
mentations address these issues with a variety of strategies.
The following criteria can help to ensure that the application
hardening “cure” is not worse than the disease.

•	 Software development lifecycle support: Identify how
debugging, patch management, and support activities will
be impacted. Identify to what extent distributed develop-
ment and shared components can be accommodated.

•	 Platform and framework support: Ensure that current
and potential future target platforms are supported. 64-
bit, Silverlight, J2ME, compact framework, and the Azure
platform are all examples of runtime environments that
may pose special challenges. Different versions of the
.NET framework and the Java SDK may also pose addi-
tional constraints.

•	 IDE integration: Integration into build processes, code
editors, and application lifecycle management solutions
reduces the level of effort, quality risk, and implementa-
tion complexity.

•	 Support and vendor viability: Given the level of integra-
tion that these technologies require, this common-sense
practice is especially relevant.

Adoption, patterns, and practices
Independent research on the adoption and best practices to
mitigate managed code risks are available, but are still rela-
tively scarce.

Analyst coverage
Gartner, Inc. estimates application hardening and shielding
market adoption to be between 5% and 20% of its “target
market.”4 Gartner writes:

“Code obfuscation is the more widely adopted and more-
mature method of protecting applications, but estimated
adoption rates are still in the single digits, because most
organizations are unaware of its benefits until they direct-
ly experience the theft of IP or an attack from an applica-
tion compromise. Furthermore, for application protection
techniques that rely on the insertion of code, development
organizations may be reluctant to allow the injection of
new code into an application from a source other than a
developer.”5

4 Ibid.

5 Ibid.

Anti-tampering

•	 Code signing: Code signing uses a digital signature to val-
idate the integrity of the binary. In the case of the .NET
framework, the CLR (Common Language Runtime) will
by default validate the “strong name” of an assembly when
loading it.

•	 Tamper detection and defense: Typically, tamper detec-
tion uses a checksum against specific regions of an execut-
able to determine if that application has been modified
since it was originally compiled. Once tamper has been
detected, a defense can be invoked. The defense can be
a simple abort or as sophisticated as a custom response
such as the de-installation of the application. Additionally,
a notification or alert can be transmitted to one or more
locations to alert stakeholders that an attempt has been
made to execute a tampered application (inside or outside
of the runtime environment).

Anti-abuse

•	 Usage monitoring: Injecting logic to stream application
adoption, method usage, user behaviors, system configu-
rations, and data values to one or more end-points. This
runtime data is processed for analysis and further integra-
tion into additional data sources such as user profiles, ser-
vice level agreements, and business performance metrics.

technology evaluation criteria
Each technology has strengths, weaknesses, and the potential
to introduce side-effects into the applications that it is pro-
tecting. As with most security practices, a portfolio or layered
approach is often the most effective. Table 1 on the previous
page provides a high-level summary of application hardening
technology characteristics.

the three dimensions of effective risk mitigation
Technology alone cannot mitigate risk. Technology must be
wrapped inside a process that will be governed by a policy

figure 3: the three dimensions of an effective application security control

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

21

Electronic gaming

Applied Concepts, an electronic bingo solutions provider,
recently announced the pivotal role of managed software to
their rapidly changing industry and the importance of in-
tegrating application hardening and shielding with activity
monitoring for both security and business performance man-
agement.10

conclusion
The unique characteristics of managed code that make reverse
engineering and tampering almost trivial are well understood
and are, in fact, a common best practice among the legitimate
development community. As with all powerful technologies,
reverse engineering and application modification can be used
productively and also for mischief. A portfolio of technolo-
gies has emerged and matured over the past decade and is in
use across industries. As with any risk-based strategy, there
is no “one size fits all” approach. However, what may prove
difficult to defend should an incident arise is no policy at all.

references
Free anti-reverse engineering tools:

•	 Java platform: Open Source Obfuscators in Java11

•	 .NET framework: Dotfuscator Community Edition12

About the Author
Sebastian Holst is currently CMO at Pre-
Emptive Solutions. He has held executive
product and strategy positions in both
public and private software companies,
focusing on application security, risk man-
agement, and content management. In ad-
dition, Sebastian has contributed at board
and advisory committee levels to the W3C,
IDEAlliance, the Open Compliance and Ethics Group, and Qi-
fense, LLC. He may be reached at Sebastian@preemptive.com.

10 http://www.preemptive.com/applied-concepts-inc-selects-runtime-intelligence-
service-as-part-of-its-bold-strategy-to-launch-a-new-software-service-and-change-
an-industry.html.

11 http://java-source.net/open-source/obfuscators.

12 http://msdn.microsoft.com/en-us/library/ms227240.aspx.

Assessing and managing Security risks unique to Java and .net | Sebastian Holst

developer platform support
Microsoft is the only large software development platform
provider to include obfuscation and has done so since the re-
lease of Visual Studio 2003. Through Visual Studio 2008, the
obfuscation tool, Dotfuscator Community Edition, included
only renaming obfuscation.

However, in October of 2008, Microsoft announced that its
next major release, Visual Studio 2010, would extend the em-
bedded application hardening and shielding capabilities to
include:

•	 Tamper detection and defense

•	 Feature monitoring

This is noteworthy for two reasons. First, in providing these
capabilities as a standard component of every Visual Studio
user’s desktop,6 Microsoft is acknowledging the breadth of
these requirements and their functional evolution. Second, at
least for the .NET framework development community, they
are establishing a development practice convention, if not a
de facto standard, for the injection technique and monitoring
data model. These new capabilities have been included in the
early releases of Visual Studio 2010 beginning with the CTP
release in October of 2008.7

Java development organizations can look to a number of
open source obfuscators for their own “free” anti-reverse en-
gineering alternatives.

use case examples
Commercial software developers, wanting to protect their
commercial products, are the most obvious scenarios for ap-
plication hardening and shielding. In fact, equipment manu-
facturers, financial institutions, and a host of other scenarios
where managed code plays a central operational role often
face even greater risk. Here are three publicly available ex-
amples.

Customer relationship management

West at Home, a provider of home-based customer contact
solutions, hardened and shielded their client-side software as
an element of a broader strategy to manage their clients’ risk.
This is notable because, while it is common for software de-
velopers to invest in reducing their own risk, e.g., IP theft and
piracy, West at Home also includes application hardening as
part of their strategy to manage client risk.8

Medical device equipment manufacturing

Full Spectrum Software, a software development and testing
provider for the medical and scientific industries, has pub-
lished a best practices white paper focusing on the need for
protecting and shielding managed code inside medical devic-
es.9

6 These capabilities are included in every Visual Studio SKU other than Express.

7 http://www.microsoft.com/Presspass/press/2008/oct08/10-27PreEmptivePR.mspx.

8 http://www.marketwire.com/press-release/West-Corporation-1002664.html.

9 http://www.fullspectrumsoftware.com/docs/codeobfuscation.pdf.

ISSA Journal | November 2009

©2009 Information Systems Security Association • www.issa.org • editor@issa.org • Permission for author use only.

