
Securing AI - Java and
JavaScript Applications

I
N
D
E
X

Overview..1

The Goal of Code Security: Defending Your
Software Assets...2

Creating a Security Maze...3

Building a Defensive Shield.......................................4

Best Practices for AI-Generated Code4

Obfuscation: The Cornerstone of Code
Security...6

Adding Security to AI-Driven Development..............7

Safeguard AI-Driven Development With
PreEmptive...9

1

Artificial intelligence is reshaping the world as we
know it, permeating nearly every facet of our lives.
As Java and JavaScript remain two of the most widely
used programming languages, the fusion of AI with
these platforms is driving efficiencies, enhancing
accuracy, and fostering unprecedented innovation.
By some estimates, 92% of software developers use
AI programming tools to be more efficient.

These tools can aid in many tasks specific to Java
and JavaScript, from automating boilerplate code to
generating intricate algorithms or even proactively
identifying potential security vulnerabilities. The AI-
driven development landscape enables developers to
boost productivity, improve code quality specific to
Java’s strong typing or JavaScript’s dynamic nature,
and hasten time to market, cementing itself as an
industry game-changer.

Yet, for all its benefits, AI-created software presents its
own set of security considerations. Just as you wouldn’t
unthinkingly trust code from an unknown external contributor,
 ensuring that AI-generated code adheres to the highest security standards is important. This is
especially true as AI models can have biases, errors, or vulnerabilities that must be managed.

The dawn of AI in Java and JavaScript development doesn’t eliminate the need for vigilant security
practices; it heightens it. Whether crafted by human hands or generated by an AI model, Java and
JavaScript code remains a potential entry point for malicious activities if not properly secured.
Special attention must be given to safeguarding AI-generated code within these languages,
understanding their specific complexities, and applying appropriate security measures.

This is where our conversation about securing and obfuscating AI-driven Java and JavaScript
applications begins. As AI shifts the software industry into a new era of automated coding and
accelerated development, security measures must evolve in tandem.

This ebook will delve into the unique security considerations when using AI for Java and JavaScript
development and explore how PreEmptive can protect your code against reverse engineering and
other hacking threats tailored to these languages. Join us on this journey to secure the future of
AI-driven Java and JavaScript software development.

PreEmptive | Securing AI - Java and JavaScript

Overview

https://venturebeat.com/ai/92-us-based-developers-already-using-ai-powered-coding-tools-at-work
https://venturebeat.com/ai/92-us-based-developers-already-using-ai-powered-coding-tools-at-work
https://www.forbes.com/sites/forbestechcouncil/2023/07/07/a-safe-chat-strategies-for-secure-deployment-of-ai-in-coding/
https://www.preemptive.com/are-in-app-protection-application-hardening-application-shielding-different/

2PreEmptive | Securing AI - Java and JavaScript

Software applications, whether written in Java with its strong type system or JavaScript’s flexible,
dynamic structure, are a series of instructions that direct a computer’s actions. The code is not only
invaluable intellectual property but also the very backbone of any application. In the realms of Java
and JavaScript, this code is a treasured asset that cybercriminals are constantly trying to exploit,
given their widespread use in various domains, from web development to enterprise applications.

If these malicious actors succeed in decompiling Java code or interpreting JavaScript’s open nature,
they gain insight into its inner workings, making your software especially vulnerable to attacks. These
vulnerabilities might be unique to how Java and JavaScript operate, handle memory, or manage
object-oriented structures. Or, if a competitor gains access, they might repurpose your specialized
algorithms or unique features, threatening your edge in a highly competitive market. The bottom line
remains the same: when your Java or JavaScript code is in the wrong hands, the results can be
catastrophic, leading to financial loss, reputation damage, and severe compliance issues.

The Goal of Code Security: Defending
Your Software Assets

Cybercriminals seek to reverse-engineer applications, steal proprietary algorithms (often encoded in
Java’s compiled bytecode or JavaScript’s client-side scripts), inject malicious code, or exploit
language-specific vulnerabilities to gain unauthorized access to sensitive data.

Leaving those risks to chance is foolish and unacceptable. Any software development process that
doesn’t include robust code security practices, such as obfuscation (critical in Java to mask compiled
classes) and application hardening (vital in JavaScript for client-side protection), is incomplete. Let’s
talk about how those strategies improve your security posture.

https://www.preemptive.com/the-impact-of-compliance-regulations-on-application-security/
https://www.preemptive.com/importance-code-obfuscation-net-android-applications/

3PreEmptive | Securing AI - Java and JavaScript

Creating a Security Maze
When you’re actively programming and working on a
project, it’s helpful when that code is neat, properly
formatted, easy to follow, and a cinch to work with, right?
But you don’t want hackers, competitors, or other prying
eyes to have that same access. That’s the purpose of
source code obfuscation.

Code obfuscation in Java and JavaScript transforms your
original source code into a functionally equivalent version
but one that’s harder to decipher. In Java, this can mean
converting bytecode into a visually unintelligible mess,
using techniques like renaming classes, methods, and
variable names into meaningless labels, or employing
control flow obfuscation. JavaScript obfuscation might
involve similar renaming but also include hiding code
logic within complex nested functions or encrypting
string literals.

For lack of better words, obfuscation turns your tidy Java or JavaScript code into a maze that’s
incredibly challenging to navigate. The goal is to confuse and misdirect those attempting to dissect
your code, making it significantly more difficult for them to reverse-engineer your Java application or
inject malicious code into your JavaScript files.

By applying language-specific techniques, you can capitalize on the particularities of Java’s compiled
nature and JavaScript’s client-side execution to add robust protection layers. Obfuscation in Java and
JavaScript is not merely about making code harder to read; it’s about understanding the underlying
structures of these languages and creating defenses that are uniquely tailored to them.

Let’s delve into the techniques and tools that can make obfuscation a powerful security strategy
for your Java and JavaScript applications, turning your transparent code into an enigmatic fortress.
Whether it’s a web application, mobile app, or enterprise solution, this approach ensures that the
intricacies of your code remain a well-guarded secret.

https://www.preemptive.com/obfuscation/

4PreEmptive | Securing AI - Java and JavaScript

Building a Defensive Shield
Application hardening is a term often associated with
enhancing security specifically within Java and JavaScript
environments. It includes a suite of protective measures
tailored to these languages, like encryption of sensitive
data (critical in Java’s enterprise applications) or runtime
checks and anti-debugging mechanisms (often used in
JavaScript to thwart client-side tampering). Hardening
transforms your Java or JavaScript application into a
more resilient form, capable of defending itself from
attacks, even if an attacker succeeds in decompiling
Java’s bytecode or bypassing JavaScript’s loose typing.

In the context of Java, application hardening might
involve creating secure class loading, implementing
security managers, and securing remote method
invocations. For JavaScript, hardening can include
implementing Content Security Policy (CSP) and avoiding
the use of dangerous functions like “eval.” The app can
detect tampering specific to the language’s structure,
react to debugging attempts, and even terminate the
application under suspicious circumstances in both
Java and JavaScript, reducing the risk of successful
exploitation.

The combination of code obfuscation and application hardening can be a very effective defense and
cornerstone of your application security strategy. They not only deter casual hackers but also
significantly increase the time, effort, and resources required by determined adversaries, providing
an additional layer of defense to secure your code. As we proceed to discuss AI-driven development,
remember these fundamental principles — they are just as relevant, if not more so, in the AI era.

Best Practices for AI-Generated Code
As AI continues to play a pivotal role in software development, its influence is undoubtedly felt in
code generation. AI-driven development tools, such as AI code generators, are proving to be
invaluable allies to developers, accelerating workflows and fostering innovative problem-solving.
However, as with all human-written or AI-generated code, security must remain a priority. Below are
some best practices to ensure the security of AI-generated code.

https://www.preemptive.com/7-tips-for-solid-appsec-in-2023/

5PreEmptive | Securing AI - Java and JavaScript

Vigilant Code Review
AI-generated code, whether in Java or JavaScript, should not be exempt from the
rigorous scrutiny applied to human-written code. Regular code reviews should
be conducted to identify potential vulnerabilities or suboptimal practices specific
to these languages. In Java, this includes examining class structures, exception
handling, and access modifiers. In JavaScript, focus on evaluating closure usage,
callback patterns, and strict mode adherence. These reviews should encompass a
thorough analysis of design patterns, error handling, logic flows, and adherence to
the specific coding standards of Java and JavaScript.

Continuous Testing
AI-generated code in both Java and JavaScript should be thoroughly tested, both
individually and as part of the larger application, to ensure functionality,
performance, and security. In Java, this means unit testing and applying
comprehensive static code analysis. In JavaScript, it involves utilizing frameworks
like Jasmine or Mocha and ensuring client-side validation doesn’t expose
vulnerabilities. Regular testing can uncover runtime errors, logic flaws, and
security vulnerabilities that may have been overlooked during code review. These
tests should include unit testing, integration testing, performance testing, and GUI
automation testing with a tool like Ranorex that can meet the unique requirements
and challenges of Java and JavaScript.

Secure Coding Practices
Adhering to secure coding practices specific to Java and JavaScript is paramount
for AI-generated code. For Java, this means employing measures like proper
exception handling, secure class loading, and utilizing established security libraries.
For JavaScript, focus on practices like validating and sanitizing user inputs on both
client and server sides, implementing Content Security Policy (CSP), and avoiding
cross-site scripting (XSS) vulnerabilities. In both languages, the use of secure
communication protocols and encryption of sensitive data should be meticulously
implemented to minimize potential vulnerabilities.

Updates and Patches
AI-generated code, whether in Java or JavaScript, may have bugs or require
improvements over time. Regular patching and updating of the code should be part
of the development lifecycle. Monitoring and promptly applying patches to
underlying Java libraries or JavaScript frameworks is vital, taking into consideration
the specific dependencies and legacy considerations that may be unique to each
language.

https://www.ranorex.com/

6PreEmptive | Securing AI - Java and JavaScript

Obfuscation and Hardening
To prevent reverse-engineering and safeguard intellectual property in AI-generated
Java and JavaScript code, obfuscation techniques should be diligently applied. Java
obfuscation may involve manipulating bytecode, while JavaScript obfuscation might
entail scrambling variable names and utilizing minification. Application hardening
techniques like encryption, anti-debugging, and tamper-detection should also be
used, adapted to each language’s runtime environment, to protect the application
from hacking attempts.

Obfuscation: The Cornerstone of
Code Security
Obfuscation plays such a pivotal role in code security and often forms the foundation for a
comprehensive code-protection strategy that it’s worth looking at more in-depth. Obfuscation is a
crucial strategy in a multi-layered approach to code security. By making the code harder to understand,
it enhances the effectiveness of other security measures and makes your application a less attractive
target for potential attackers.

Shielding Intellectual Property
One of the primary reasons to obfuscate Java or JavaScript
code is to protect your intellectual property (IP). Java’s
compiled nature and JavaScript’s ubiquity on the web present
unique challenges, and obfuscation is adapted accordingly.
Whether it’s manipulating bytecode in Java or replacing
variables and function names in JavaScript, obfuscation hides
the logic and innovative algorithms that could give your
business a competitive edge. In both languages, it stands
as the first line of defense in safeguarding your business’s
unique value.

Deterring Hackers
Obfuscation increases the time, resources, and expertise needed to reverse-engineer an application.
The language-specific complexity serves as a significant deterrent for hackers who may be seeking
low-hanging fruit, whether it’s trying to decompile Java’s bytecode or parse through scrambled
JavaScript.

7PreEmptive | Securing AI - Java and JavaScript

Complementing Other Security Measures
Obfuscation is a foundation for other application hardening
techniques. Techniques such as encryption, anti-debugging,
and tamper detection, while effective on their own, gain an
extra level of protection when the code they’re safeguarding
is obfuscated. If an attacker can’t understand the code, it
becomes significantly harder to bypass these security
measures.

While obfuscation makes the code difficult to understand, it
doesn’t fix vulnerabilities in the code. That’s where our partner,
Kiuwan, can help out with vulnerability scanning tools to
locate defects so you can fix them prior to release. By adding
a layer of complexity to the code, obfuscation enhances the
effectiveness of these measures by making vulnerabilities
harder to exploit and the application harder to tamper with.

Adding Security to AI-Driven
Development
Imagine a situation where you’re developing a web application. You’ve used AI tools to generate code
snippets and templates, accelerating your development process. Now, it’s time to make sure the
AI-generated code is secure and protected against reverse engineering.

This is where PreEmptive’s obfuscation solutions come in handy. With just a few clicks, you can
obfuscate and harden your code just as quickly as you used AI to write it. Protect your application
without sacrificing the benefits of AI-driven development.

PreEmptive’s solutions, which include DashO for Java/Android and JSDefender for JavaScript,
provide comprehensive protection for your code. These solutions offer feature-rich obfuscation and
application-hardening tools that are ideal for developers looking to secure their applications.

Comprehensive Code Obfuscation — PreEmptive’s tools deliver
advanced obfuscation techniques that transform your code into a
functionally equivalent but harder-to-understand format. They modify the
structure and names within your code, making it difficult for unauthorized users
to understand or reverse engineer.

https://www.kiuwan.com/code-security-sast/
https://www.preemptive.com/products/dasho/
https://www.preemptive.com/products/jsdefender/
https://www.preemptive.com/does-obfuscation-affect-code-performance/

8PreEmptive | Securing AI - Java and JavaScript

Application Hardening — Beyond obfuscation, PreEmptive solutions
integrate a range of application hardening techniques, including encryption,
tamper detection, and anti-debugging measures to keep attackers out of your
application.

Seamless Integration — With PreEmptive, you can add code protection to
your development workflow without disrupting your release cycle. Get quick
integration with all the standard development environments and continuous
integration pipelines, ensuring your code is protected from creation to
deployment.

Automated Security Analysis — Beyond obfuscating your code and
arming it with active protection, you need to make sure the code is free of
vulnerabilities. Kiuwan’s vulnerability detection and compliance monitoring help
you locate and fix vulnerabilities and exploits before deployment.

9

Do you leverage AI programming tools to accelerate your code development? Are you ensuring that
the accelerated pace of development does not compromise the integrity of your software? In today’s
rapidly evolving digital landscape, the blend of innovation and security is not merely a choice but a
necessity.

With PreEmptive, you can enhance your development processes without sacrificing security. Our
tools seamlessly integrate with your existing workflow, offering real-time protection and optimization.
Whether you’re a startup or an established enterprise, PreEmptive provides tailored solutions to meet
your unique needs. Let’s work together to create robust, secure software. Together, we can foster
innovation that is both rapid and responsible.

Do you want to see how PreEmptive helps organizations worldwide protect their code and avoid being
the next data breach headline? Contact us to request a demonstration to learn how PreEmptive can
help.

PreEmptive | Securing AI - Java and JavaScript

GET IN TOUCH:

Headquarters in USA
10801 N Mopac Expressway

Building 1, Suite 100

Austin, TX, 78759

phone: +1 (512) 226-8080

email: solutions@preemptive.com

European Sales
140 bis rue de Rennes

75006 Paris

France

Tel: +33 01.83.64.34.74

email: EuroSolutions@preemptive.com

Smart App Protection for an Unsafe World!

Safeguard AI-Driven Development
With PreEmptive

Japan
AG-Tech Corp

Tel: +81-3-3293-5300

Email: info@agtech.co.jp

https://www.preemptive.com/contact/

